毕业论文范文网-论文范文
电气工程 会计论文 金融论文 国际贸易 财务管理 人力资源 学前教育 德语论文 工程管理 文化产业 工商管理 会计专业 行政管理 广告学
机械设计 汉语文学 英语论文 物流论文 电子商务 法律论文 工商管理 旅游管理 市场营销 药学论文 播音主持 人力资源 金融论文 保险学
制药工程 生物工程 包装工程 模具设计 测控专业 工业工程 教育管理 行政管理 计算机论 电子信息 市场营销 法学论文 财务管理 投资学
体育教育 小学教育 印刷工程 土木工程 书法论文 护理论文 心理学论 信息管理 公共事业 给水排水 新闻专业 摄影专业 广电编导 经济学
  • 范文首页 |
  • 毕业论文 |
  • 论文范文 |
  • 计算机论文 |
  • 外文翻译 |
  • 工作总结 |
  • 工作计划 |
  • 现成论文 |
  • 论文下载 |
  • 教学设计 |
  • 免费论文 |
  • 原创论文 |
搜索 高级搜索

原创毕业论文

当前位置:毕业论文范文网-论文范文 -> 免费论文 -> 数学论文

从“中考探索性问题”到“课堂探索能力的培养”——谈初三几何探索性复习课的初探

作者: 浏览:54次
免费专业论文范文
免费专业论文
政治工作论文
计算机论文
营销专业论文
工程管理论文范文
医药医学论文范文
法律论文范文
生物专业论文
物理教学论文范文
人力资源论文范文
化学教学论文范文
电子专业论文范文
历史专业论文
电气工程论文
社会学专业论文
英语专业论文
行政管理论文范文
语文专业论文
电子商务论文范文
焊工钳工技师论文
社科文学论文
教育论文范文
数学论文范文
物流论文范文
建筑专业论文
食品专业论文
财务管理论文范文
工商管理论文范文
会计专业论文范文
专业论文格式
化工材料专业论文
英语教学专业论文
电子通信论文范文
旅游管理论文范文
环境科学专业论文
经济论文
人力资源论文范文
营销专业论文范文
财务管理论文范文
物流论文范文
财务会计论文范文
数学教育论文范文
数学与应用数学论文
电子商务论文范文
法律专业论文范文
工商管理论文范文
汉语言文学论文
计算机专业论文
教育管理论文范文
现代教育技术论文
小学教育论文范文
机械模具专业论文
报告,总结,申请书
心理学论文范文
学前教育论文范文

收费计算机专业论文范文
收费计算机专业论文
Delphi
ASP
VB
JSP
ASP.NET
VB.NET
java
VC
pb
VS
dreamweaver
c#.net
vf
VC++
计算机论文
毕业论文范文题目:从“中考探索性问题”到“课堂探索能力的培养”——谈初三几何探索性复习课的初探,论文范文关键词:从“中考探索性问题”到“课堂探索能力的培养”——谈初三几何探索性复习课的初探
从“中考探索性问题”到“课堂探索能力的培养”——谈初三几何探索性复习课的初探毕业论文范文介绍开始:

从“中考探索性问题”到“课堂探索能力的培养”——谈初三几何探索性复习课的初探
摘  要:本文从探索“中考探索性问题”入手,阐述了教师如何设计探索性问题,如何在课堂上培养学生探究能力,提出了宁可少讲知识,也要探究,也要创新的观点。
 关键词:探索性问题、探索能力、有效复习、创新
 
 探索是人类认识客观世界过程中最生动,最活跃的思维活动,探索性问题存在于一切学科领域之中,它对培养学生思维的创造性、深刻性、发散性有着独特的要求。新课标指出,数学学习不仅包括数学的一些现成的结果,还有包括这些结果的形成过程。探索性问题已成为课改思想的具体体现的热点之一,纵观全国各地中考试题,探索性试题已成为中考压轴的主要题型来源。这些中考探索性问题不仅可以考查学生发现问题、自主探究、解决问题等综合能力,暴露出学生在解题过程中的思维品质,还能反馈学生对数学思想方法的掌握情况。这点中考探索性问题又是在新课程理念下培养学生观察、实验、操作、归纳、猜想的直观思维能力和合情推理能力的好材料。
 我们应重视探索。课堂上应重视对学生探索能力的培养。怎么培养?对于我们这些长期受演绎论证训练的教师来说,缺乏“探索能力”,很容易忽视直观思维的存在和作用,虽对“探索”有所重视,但这重视只不过停留在由几道探索型题目组成的专题讲解上,在中考指挥棒下,很多老师的课堂由大量的例题组成,大容量、大密度的满堂灌,根本没留出或没有充分的时间让学生探索,学生没有探索,那“探索能力”的培养又从何谈起。
 笔者从培养自身的探索能力入手,认真探索众多的中考探索性问题,从这些问题中受到启发,试着利用改编、设计探索性问题,努力创设探索型几何复习课。以下是笔者觉得对自己启发较大的几种探索性问题。
利用平移、旋转构造的探索性问题:
“平移、旋转”是图形的基本变换,它对发展学生空间观念,丰富学生对空
间图形的认识与感受,使学生经历观察、操作、推理、想像等探索过程。如下例:
一等腰直角三角尺GEF的两条直角边与正方形ABCD的两条边分别重合在
一起。现正方形ABCD保持不动,将三角尺GEF绕斜边EF的中点O(点O也是BD中点)按顺时针方向旋转。

 ⑴如图2,当EF与AB相交于点M,GF与BD相交于点N时,通过观察或测量BM,FN的长度,猜想BM,FN满足的数量关系,并证明你的猜想;
 ⑵若三角尺GEF旋围到如图3所示的位置时,线段FE的延长线与AB的延长线相交于点M,线段BD的延长线与GF的延长线相交于点N,此时,⑴中的猜想还成立吗?若成立,请证明;若不成立,请说明理由。
 受这类题的启发,我在备课时,把一些证明题中静止的图形进行图形变换来设计探索题。如:
 
 已知:如图,是的高线,且,
 是上一点,且,求证:
 ⑴线段与间有什么关系?并证明你的结论。
 ⑵连结,若把绕顶点旋转一角度,使
 点分别落在内和  内,画出图形,
 探索⑴中结论是否成立。
 
 课堂中学生通过对这类问题探索,会用运动的眼光看问题,锻炼了学生观察图形的能力,能利用类比的思想从变化中找出不变的规律,同时也训练了他们,通过平移旋转来处理图形,使他们在特殊的图形、简单的图形中得到启发而进行猜测。
运用类比思想构造的探索性问题:如下例:
 问题背景  某课外学习小组在一次学习研讨中,得到如下两个命题:
如图1,在正三角形ABC中,M、N分别是AC、AB上的点,BM与CN相交于点O,若∠BON = 60°,则BM = CN.
如图2,在正方形ABCD中,M、N分别是CD、AD上的点,BM与CN相交于点O,若∠BON = 90°,则BM = CN.
 然后运用类比的思想提出了如下的命题:
如图3,在正五边形ABCDE中,M、N分别是CD、DE上的点,BM与CN相交于点O,若∠BON = 108°,则BM = CN.
任务要求 
 (1)请你从①、②、③三个命题中选择一个进行证明;(说明:选①做对的得4分,选②做对的得3分,选③做对的得5分)
 (2)请你继续完成下面的探索:
如图4,在正n(n≥3)边形ABCDEF…中,M、N分别是CD、DE上的点,BM与CN相交于点O,问当∠BON等于多少度时,结论BM = CN成立?(不要求证明)
如图5,在五边形ABCDE中,M、N分别是DE、AE上的点,BM与CN相交于点O,当∠BON = 108°时,请问结论BM = CN是否还成立?若成立,请给予证明;若不成立,请说明理由.

 (1)我选           .
 证明:
 
 受该例的启发,利用类比的思想把一些知识串在一起来让学生探索。如在复习三角形中位线内容时,我这样设计探索:
 探索一:
 ⑴E、F分别是中AB、AC边上的中点,连结EF,我们得到了什么线段,它有什么特征?
 ⑵如何把三角形剪拼成一个平行四边形?矩形?
 探索二:
 ⑴把三角形换成四边形,探索中点四边形问题。
 ⑵如何把四边形剪拼成一个平行四边形、矩形?
 探索三:
 ⑴把四边形换成梯形,连结梯形两腰中点,得到什么?它有什么特征?
 ⑵取梯形上、下底中点并连结,这条线段的长是否等于两腰和的一半。
 我们还可以取梯形对角形的中点与梯形中位线联系起来,还可以加条件:如当对角线互相垂直,对角线夹角为时……让学生在这样的不知不觉的探索中加课对知识理解的广度和深度,并且能培养学生用类比的思想来进行探索。
二、规律探索性问题
这类题型十分常见,要求学生从所提供的图形,数字信息中寻找共同之处,
观察、分析、猜想、归纳出一般规律,探索这类题型可引导学生从特殊情况进行研究、归纳、概括,如下例:
 观察下面的点阵图形和与之相对应的等式,探究其中的规律:
 ⑴请你在④和⑤后面的横线上分别写出相对应的等式:
 
 
 ⑵通过猜想,写出与第n个图形相对应的等式。
 
 受这类题型的启发,我在复习图形的初步认识时让学生探索下面这些规律:
 ⑴直线上有几个点,则共有_________条线段;
 ⑵以O为端点引n条射线,当得到的最大角小于平角时,小于平角的角的个数为___个;
 ⑶n条直线最多有______个交点;
 ⑷过任三点不在同一直线上的n点一共可画______条直线。
 ⑸平面内n条直线最多将平面分成________个部分。
 探索这类问题时,引导学生从特殊值即当n为1、2、3……入手进行探索,从中发现规律、归纳小结。教师通过这类问题,有效地培养学生用“特殊——一般”的思想来进行探索,培养学生从特殊的事例中寻求一般规律的能力。
四、方法探索性问题,这类问题考查学生对一些已学方法的掌握程度。如下
面两例:

 1、已知中,,AC=6,BC=8。
Ⅰ、如图①,若半径的的⊙
是的内切圆,求;
Ⅱ、如图②,若半径为的两个
等圆⊙、⊙外切,且⊙
与AC、AB相切,⊙与BC、AB
相切,求;
Ⅲ、如图③,当n是大于2的正整
数时,若半径为依次外切,且
⊙、⊙、…、⊙依次外切,且⊙与AC、AB相切,⊙与
BC、AB相切,⊙、⊙、…、⊙均与AB边相切,求。

在学习扇形的面积公式时,同学们推得,并通过比较扇形面积公式与弧长公式,得出扇形面积的另一种计算方式。
接着老师们让同学们解决两个问题:
 问题Ⅰ,求弧长为,圆心角为的扇形面积。
 问题Ⅱ,某小区设计的花坛形状如图中的阴影部分,已知AB和CD所在
圆的圆心都是点,AB的长为,CD的长为,AC=BD=d,求花坛的面积。⑴请你解答问题I;
 ⑵在解完问题Ⅱ后的全班交流中,有位同学发现扇形面积公式类似于三角形面积公式;类似梯形面积公式,他猜想花坛的面积。他的猜想正确吗?如果正确,写出推导过程;如果不正确,请说明理由。
 
 从第1题中受到启发,当我在复习三角形内切圆时,进行了这道题的探索渗透,当学生在探索时不单巩固了“面积法”,而且引导学生用“类比”的思想进行探索。
 从第2题中受到启发,我可以把一些老教材有而新教材没有的知识,作为探索的材料,让学生在探索中进一步巩固了课本知识和方法,提升了学生对知识更深、更广的理解。同时为教师处理教材提供了思路,教师以课本知识为基础,以探索课本延伸知识或相关知识为手段促进知识的巩固、方法的掌握,使课堂效果更好。我曾让学生探索圆台的两个侧面积公式,探索圆中的一些成比例线段(圆幂定理),相似多边形的探索……学生的成功探索让我更自信,对于考试我无需压题、猜题,不需要搞题海战,学生的解决能力提高了,还怕什么。
 在课堂中探索多了,学生的胆子大了,会尝试用不同方法进行多方面探索,而同时在学习设计探索性问题时,我的课堂探索问题的设计能力也增强了。
 比如我会利用印错的题目让学生探索,培养学生用反证法来探索,如下列:
 
 在直角梯形ABCD中,AB∥DC,AB⊥BC,E是CD的中点,且AB=AD+BC,则△ABE是
_______三角形。

 此题没有图,学生大部分答案是直角三角形,而我在探索中否定了直角三角形,题目所提供的答案是等腰直角三角形。我把该题拿到了课堂,引导学生假设BE⊥AE,然后把△ADE绕点OE旋转180°,与
△FCE重合(如图),发现在△FCB中,BF<FC+BC,
从而得到BF<BA,而由BE垂直平分AF又得到
BF=BA。两者产生矛盾,从而假设错误。我还让学生从“等腰直角三角形”这个参考答案入手,让学生大胆地修改已知条件。
 再如:新课标降低了对逻辑推理的要求,于是现在学生在逻辑推理的能力也相对弱了,而作为教师的我逻辑推理是强项,我把一些学生的困难题放在课堂里,引导学生从不同的角度、不同的方法探索,用多种方法证明,如下例:
 
 如图,已知△ABC为等边三角形,点D为BC边上
的任意一点,∠ADE=60°,DE与∠ACB的外角∠ACM
的平分线CE相交于点E。
 求证:AD=DE。
 
 该题作为作业时,很多同学感到困难,我在课堂中分别通过构造全等三角形,通过证相似,通过翻折多种方法来引导学生证明,很多学生在反思中后悔自己怎么没有继续探索下去,其实有很多解决问题的方法。
 我在复习“空间与图形”这部分内容时,我的每一节课都是探索课。利用探索复习双基,再利用中考探索性问题来培养学生的探索能力,同时巩固和提升了课本中所学的知识,最后再设计一个个的新探索问题让学生探索。学生是课堂的主人,他们自主探究,热烈讨论,创新的火花时时涌现。这样复习课产生好的效果是显而易见的。
 通过探索,使我们感到学习数学是有用的,可以利用所学的知识解决问题。探索能力具备了,创新能力增强了,探索性问题存在于各个领域,还怕我们的学生成为高分低能吗?
 其实在探索中更多的是失败,但正是因为这种失败的经验来帮助学生不断地进步,他们在失败再失败后尝到成功的喜悦,在失败再失败中提高了探索创新能力。
 其实开设探索性课堂,教师备课压力相当大,但教师课前的探索,课堂中与学生一起交流探索,教师从学生中学到很多,这在“教师一言堂”的复习课中是得不到的。学生在探索中成长,教师也在探索中成长。
 为了设计探索问题,培养学生的探索能力我经历很多曲折,还在不断的尝试,不断地改进。我用我的尝试告诉大家,课堂上宁可少讲些知识(例题),也要探索。有了探索就会有创新,就有发展。试着探索吧,你一定会受益非浅的。

参考资料:
 2006年全国各地中考试卷  
 关文信主编的《新课程理念与初中数学课堂教学实施》


以上为本篇毕业论文范文从“中考探索性问题”到“课堂探索能力的培养”——谈初三几何探索性复习课的初探的介绍部分。
本论文在数学论文栏目,由论文网(www.zjwd.net)整理,更多论文,请点论文范文查找

毕业论文降重 相关论文

收费专业论文范文
收费专业论文
汉语言文学论文
物理学论文
自动化专业论文
测控技术专业论文
历史学专业论文
机械模具专业论文
金融专业论文
电子通信专业论文
材料科学专业论文
英语专业论文
会计专业论文
行政管理专业论文
财务管理专业论文
电子商务国贸专业
法律专业论文
教育技术学专业论文
物流专业论文
人力资源专业论文
生物工程专业论文
市场营销专业论文
土木工程专业论文
化学工程专业论文
文化产业管理论文
工商管理专业论文
护理专业论文
数学教育专业论文
数学与应用数学专业
心理学专业论文
信息管理专业论文
工程管理专业论文
工业工程专业论文
制药工程专业论文
电子机电信息论文
现代教育技术专业
新闻专业论文
艺术设计专业论文
采矿专业论文
环境工程专业论文
西班牙语专业论文
热能与动力设计论文
工程力学专业论文
酒店管理专业论文
安全管理专业论文
交通工程专业论文
体育教育专业论文
教育管理专业论文
日语专业论文
德语专业论文
理工科专业论文
轻化工程专业论文
社会工作专业论文
乡镇企业管理
给水排水专业
服装设计专业论文
电视制片管理专业
旅游管理专业论文
物业管理专业论文
信息管理专业论文
包装工程专业论文
印刷工程专业论文
动画专业论文
环境艺术专业论文
信息计算科学专业
物流专业论文范文
人力资源论文范文
营销专业论文范文
工商管理论文范文
汉语言文学论文范文
法律专业论文范文
教育管理论文范文
小学教育论文范文
学前教育论文范文
财务会计论文范文

电子商务论文范文

上一篇:新课程理念下的初中数学学习兴趣.. 下一篇:浅谈初中数学概念的教学

最新论文

精品推荐

毕业论文排版

热门论文


本站简介 | 联系方式 | 论文改重 | 免费获取 | 论文交换

本站部分论文来自网络,如发现侵犯了您的权益,请联系指出,本站及时确认删除 E-mail:229120615@qq.com

毕业论文范文-论文范文-论文同学网(www.zjwd.net)提供数学论文毕业论文,毕业论文范文,毕业设计,论文范文,毕业设计格式范文,论文格式范文

Copyright@ 2010-2024 zjwd.net 毕业论文范文-论文范文-论文同学网 版权所有