毕业论文范文网-论文范文
电气工程 会计论文 金融论文 国际贸易 财务管理 人力资源 学前教育 德语论文 工程管理 文化产业 工商管理 会计专业 行政管理 广告学
机械设计 汉语文学 英语论文 物流论文 电子商务 法律论文 工商管理 旅游管理 市场营销 药学论文 播音主持 人力资源 金融论文 保险学
制药工程 生物工程 包装工程 模具设计 测控专业 工业工程 教育管理 行政管理 计算机论 电子信息 市场营销 法学论文 财务管理 投资学
体育教育 小学教育 印刷工程 土木工程 书法论文 护理论文 心理学论 信息管理 公共事业 给水排水 新闻专业 摄影专业 广电编导 经济学
  • 范文首页 |
  • 毕业论文 |
  • 论文范文 |
  • 计算机论文 |
  • 外文翻译 |
  • 工作总结 |
  • 工作计划 |
  • 现成论文 |
  • 论文下载 |
  • 教学设计 |
  • 免费论文 |
  • 原创论文 |
搜索 高级搜索

原创毕业论文

当前位置:毕业论文范文网-论文范文 -> 免费论文 -> 物理教学论文

三力平衡问题中极值的求解方法

作者: 浏览:123次
免费专业论文范文
免费专业论文
政治工作论文
计算机论文
营销专业论文
工程管理论文范文
医药医学论文范文
法律论文范文
生物专业论文
物理教学论文范文
人力资源论文范文
化学教学论文范文
电子专业论文范文
历史专业论文
电气工程论文
社会学专业论文
英语专业论文
行政管理论文范文
语文专业论文
电子商务论文范文
焊工钳工技师论文
社科文学论文
教育论文范文
数学论文范文
物流论文范文
建筑专业论文
食品专业论文
财务管理论文范文
工商管理论文范文
会计专业论文范文
专业论文格式
化工材料专业论文
英语教学专业论文
电子通信论文范文
旅游管理论文范文
环境科学专业论文
经济论文
人力资源论文范文
营销专业论文范文
财务管理论文范文
物流论文范文
财务会计论文范文
数学教育论文范文
数学与应用数学论文
电子商务论文范文
法律专业论文范文
工商管理论文范文
汉语言文学论文
计算机专业论文
教育管理论文范文
现代教育技术论文
小学教育论文范文
机械模具专业论文
报告,总结,申请书
心理学论文范文
学前教育论文范文

收费计算机专业论文范文
收费计算机专业论文
Delphi
ASP
VB
JSP
ASP.NET
VB.NET
java
VC
pb
VS
dreamweaver
c#.net
vf
VC++
计算机论文
毕业论文范文题目:三力平衡问题中极值的求解方法,论文范文关键词:三力平衡问题中极值的求解方法
三力平衡问题中极值的求解方法毕业论文范文介绍开始:


三力平衡问题中极值的求解方法

三力平衡是最常见的类型,在这种类型中的时涉及由于其中一个力方向的缓慢变化引起两力的大小改变,这种情况称为动态平衡,且往往存在极值问题,下面通过一例谈谈此类问题极值的求解方法。
 题目:如图所示,在绳下端挂一质量为m的物体,用力F拉绳使悬绳偏离竖直方向α角,且方向,当拉力F与水平方向的夹角θ多大时F有最小值?最小值是多少?
 解法一、常规解析法:以结点O为研究对象,画出受力图,建立坐标轴,如图所示:根据平衡条件有:
 Fcosθ-Tsinα=0         
 Fsinθ+Tcosα-mg=0       
 由两式消去T可得
 F=mgsinα/cos (α-θ)
 所以当(α-θ)=0,即θ=α时F有最小值,且
 Fmin= mgsinα。
 此法是求解共点力平衡问题的普遍适用的基本方法,难点在于力的分解和求解方程组。用于求极值,要求有较好的运用数学知识解决物理问题的能力。
 解法二、巧妙建轴解析法:以结点O为研究对象,画出受力图,建立坐标轴,如图所示。根据几何条件可得,力F与轴之间的夹角为(α-θ)。
 根据x轴方向的平衡条件有:
 Fcos(α-θ)-mgsinα=0
 F=mgsinα/cos (α-θ)
 因此,当(α-θ)=0,θ=α,即拉力F与水平方向的夹角等于α角时拉力F有最小值,且Fmin= mgsinα。
 此法坐标轴建立巧妙,绳的拉力T不出现在x轴方向的平衡方程中,便于讨论,只需根据这一个方程即可求出结果。难点在于根据几何条件寻找相关的角度,此法运用的数学知识较简单,不失为求解此类极值的巧妙方法.
 解法三、矢量分解法:以结点O为研究对象,画出受力图。将已知的重力mg沿另两个力的反方向进行分解,如图所示。因结点O处于平衡状态,则力F必与其方向的重力的分力等值,即F=G1。由几何关系可知,在ΔOAB中,根据正弦定理有:
 G1/sinα=mg/sin[90°-(α-θ)]
 F=G1=mgsinα/sin[90°-(α-θ)]
 欲使最小,必有α-θ=0,即θ=α,拉力F与水平方向的夹角等于α角,且此时有Fmin= mgsinα。
 在能够确定三个力之间的夹角和一个已知力时,用该方法求解较为简捷。用于求极值,数学运算和讨论也较简单,难点仍在于根据几何条件确定相关的角度。
 解法四、矢量图解法:结点O受三个力作用而平衡,将三个力首尾相接应构成封闭的矢量三角形。因重力mg的大小和方向都不变,拉力T的方向不变,随着力F方向的缓慢变化,可作出多种情况下的矢量三角形,如图所示。由图可知,当F与T垂直,根据直角三角形的知识可得Fmin= mgsinα。
 图解法形象直观,易于理解,且可显示出变力的动态变化过程。极值出现的条件明显,不失为此类极值问题求解的最佳方法。
 解法五、力矩平衡法:以偏离竖直方向的悬绳为研究对象,悬绳本身的重力不计,其受力情况如图。以绳的悬点O′为转动轴,则绳拉力T的力矩为零,根据力矩平衡条件可得:
 MG=MF
 因α角保持不变,则MG恒定。从而有力F的方向变化时,对悬点O′的力矩MF恒定。俗使力F最小,则需对悬点O′的力臂最大,故力F的方向必须与绳子垂直,即力F与水平方向的夹角θ=α,设绳长为L,则:
 mgLsinα=FminL
 Fmin=mgsinα。
 用力矩平衡法求此类问题的极值,思路明确、极值出现的条件明显、运算简便,既强化了有关概念,又培养了能力。该法也是一种较好的方法,难点在于转轴和力臂的准确确定。


以上为本篇毕业论文范文三力平衡问题中极值的求解方法的介绍部分。
本论文在物理教学论文栏目,由论文网(www.zjwd.net)整理,更多论文,请点论文范文查找

毕业论文降重 相关论文

收费专业论文范文
收费专业论文
汉语言文学论文
物理学论文
自动化专业论文
测控技术专业论文
历史学专业论文
机械模具专业论文
金融专业论文
电子通信专业论文
材料科学专业论文
英语专业论文
会计专业论文
行政管理专业论文
财务管理专业论文
电子商务国贸专业
法律专业论文
教育技术学专业论文
物流专业论文
人力资源专业论文
生物工程专业论文
市场营销专业论文
土木工程专业论文
化学工程专业论文
文化产业管理论文
工商管理专业论文
护理专业论文
数学教育专业论文
数学与应用数学专业
心理学专业论文
信息管理专业论文
工程管理专业论文
工业工程专业论文
制药工程专业论文
电子机电信息论文
现代教育技术专业
新闻专业论文
艺术设计专业论文
采矿专业论文
环境工程专业论文
西班牙语专业论文
热能与动力设计论文
工程力学专业论文
酒店管理专业论文
安全管理专业论文
交通工程专业论文
体育教育专业论文
教育管理专业论文
日语专业论文
德语专业论文
理工科专业论文
轻化工程专业论文
社会工作专业论文
乡镇企业管理
给水排水专业
服装设计专业论文
电视制片管理专业
旅游管理专业论文
物业管理专业论文
信息管理专业论文
包装工程专业论文
印刷工程专业论文
动画专业论文
环境艺术专业论文
信息计算科学专业
物流专业论文范文
人力资源论文范文
营销专业论文范文
工商管理论文范文
汉语言文学论文范文
法律专业论文范文
教育管理论文范文
小学教育论文范文
学前教育论文范文
财务会计论文范文

电子商务论文范文

上一篇:涉及绳子能发生突变的几个量 下一篇:三角形在物理解题中的应用

最新论文

精品推荐

毕业论文排版

热门论文


本站简介 | 联系方式 | 论文改重 | 免费获取 | 论文交换

本站部分论文来自网络,如发现侵犯了您的权益,请联系指出,本站及时确认删除 E-mail:229120615@qq.com

毕业论文范文-论文范文-论文同学网(www.zjwd.net)提供物理教学论文毕业论文,毕业论文范文,毕业设计,论文范文,毕业设计格式范文,论文格式范文

Copyright@ 2010-2024 zjwd.net 毕业论文范文-论文范文-论文同学网 版权所有